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A B S T R A C T

Accurate pavement crack segmentation is crucial for quantifying the extent of pavement damage. However,
shadows from roadside trees or buildings often significantly impact the results of crack segmentation in actual
crack detection or segmentation processes. To solve this problem, this paper presents a pavement crack seg-
mentation network called SCSNet based on discrete cosine transform. SCSNet combines a proposed shadow
removal module with a loss function based on pixel frequency distribution to further minimize the impact of
shadows on accuracy. Additionally, a crack dataset with shadows was introduced. By comparing with the
classical semantic segmentation network, the results show that SCSNet with training from scratch, outperforms
classic models based on pre-trained weights. The result of the ablation experiments also demonstrate that the
proposed tricks are effective. Finally, the actual crack segmentation results further demonstrate the superiority of
SCSNet in segmenting cracks in complex environments.

1. Introduction

Nowadays, most countries in the world have built high-density
highway networks, which provide excellent convenience for trans-
portation and economic development. As highways are used frequently,
cracks of various shapes and sizes develop in the pavement. Overloaded
vehicles can accelerate this process, causing these cracks to become
larger damage. The presence of pavement damage can significantly
diminish driving comfort, accelerate the wear and tear of vehicles, and
even result in loss of vehicle control, thereby increasing the likelihood of
traffic accidents. Therefore, timely detection of pavement cracks plays a
vital role in maintaining highway safety and the healthy development of
transportation.

The main detection methods for pavement damage are manual in-
spection, multi-functional inspection cars, and inspection methods
based on computer vision or deep learning. The manual can flexibly
adjust the inspection strategy according to the actual situation of the
highway. For the unpredictable damage situation, the manual inspection
is more adaptable to the changes in the field. Furthermore, it does not
rely on specific technology or equipment and is not hindered by
equipment or technology failure. However, manual inspection of roads
is time-consuming, and inefficient, and requires the road to be closed
during the inspection. As a result, multi-functional inspection cars are

gradually replacing human labor to detect road damage. These cars are
equipped with advanced sensors that can detect road damage with high
precision, thus reducing the error that can occur in the manual inspec-
tion. Multi-functional inspection cars also have certain limitations, high
costs, and complex operation processes that make it difficult to be
massively expanded. For some complex defects, manual confirmation is
still needed. Therefore, more and more scholars have begun to explore
simple but efficient pavement damage detection methods [1,2]. Com-
puter vision technology can solve this problem well.

Many scholars have used convolution neural networks (CNN) for the
detection and segmentation of pavement cracks, potholes, and other
damage [3–6]. [7] used a Generative Adversarial Network (GAN) to
generate pavement texture images to improve the classification accu-
racy of pavement defects. Zhang et al. [8] used a modified YOLO v3
model to realize the detection of pavement cracks and potholes.
Following the introduction of the dataset containing pavement damage
from multiple countries [9], the Institute of Electrical and Electronics
Engineers (IEEE) organized an international competition focused on the
detection of road damage [10]. In this competition, different teams used
different strategies to improve the accuracy of detection. Data
augmentation [11], ensemble learning [12,13], and attention mecha-
nisms [14,15] can significantly improve the accuracy of the model in
road disease detection. Among all the participants, [12] achieved an
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accuracy of 0.77 in the dataset of 6 countries and took the first place.
The studies mentioned above only involved detecting the location

and category of the defects in the pictures, without categorizing them at
the pixel level. Therefore, more people started using semantic segmen-
tation models to segment damage. Choi et al. [16] proposed SDDNet
based on standard convolution, modified spatial pyramid pooling
module, and densely connected separable convolution, which can
realize real-time crack segmentation. Zhang and Liu [17] combined
deformable convolution [18] with the U-Net network [19] to achieve
precise segmentation of pavement cracks. Guan et al. [20] combined 2D
and 3D images and proposed a U-Net segmentation network based on
depthwise separable convolution to realize the three-dimensional seg-
mentation of pavement cracks and potholes. YOLO v3 [21] and Faster
RCNN [22] were used by Liu et al. [23] to perform a two-stage crack
detection and segmentation task, which achieved the state of the art at
that time.

However, these models were trained on datasets collected under
normal conditions, meaning good lighting and no distractions. During
the practical detection activities, it is common to encounter shadows
caused by trees, vehicles, and other objects, which can be seen in Fig. 1.
These shadows can significantly impact the detection and segmentation
accuracy.

Shadow crack images can be classified into six categories since trees
or objects, such as buildings, on both sides of the road that create
shadows:

1. Images with large areas of block shadows.
2. Images with many strips shadows.
3. Images with many scattered shadows.

These shadows can affect the gradient, brightness, and other features
of crack or pothole edges, potentially leading to misidentification. To
solve this problem, local outlier factor (LOF) was used by Wang et al.
[24] to remove the shadow and enhance the defects information. Ju
et al. [25] used an illumination compensation model and k-means
clustering algorithm to detect pavement cracks under the influence of
shadows with a 93.86% F-measure score. [26] combined the wavelet
transform with the Retinex algorithm, thus compensating for the infor-
mation lost in the wavelet transform, and the whole system achieved a
crack recognition accuracy of 95.8%. And a crack segmentation method
based on the grayscale standard deviation of the local window and the
distance standard deviation of the connected regions was proposed by
[27]. Pavement cracks are detected with an accuracy of 96%. Although
these methods effectively avoid the influence of shadows on crack edge
features, the artificial design of filtering algorithms is very complex and
less robust. In addition, image quality may degrade, and classification or
segmentation accuracy may be affected by direct digital image

Fig. 1. Crack images with shadows.

Fig. 2. Network structure of SCSNet.
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processing operations on images containing shadows [28].
Deep learning-based shadow removal methods typically require

simultaneous training on shadow and shadow-free images [29,30]. This
means that a lot of effort needs to be spent on the dataset. To decrease
the dataset requirement, Liu et al. [31] used the shadow image along
with its mask for training and achieved shadow removal through weakly
supervised learning. Le et al. [32] trained generative adversarial net-
works based on the physical principles of shadow generation to achieve
competitive shadow removal results, reaching the state-of-the-art in
video shadow removal.

The research methods mentioned above are commonly used in the
field of computer vision. The shadows obtained from actual pavement
damage detection equipment are often more complicated. At present,
few studies directly use deep learning models for damage detection in
shadows. The approach of some scholars is to divide the detection of
defects into two parts: shadow removal and disease detection. [33]
proposed a pavement shadow and crack dataset and a two-stage crack
detection network. The network first performed shadow removal and
then used a luminance difference algorithm to detect pavement cracks.
[34] also performed noise or shadow removal in the first stage and
finally detected cracks by CNN model. Zou et al. [35] developed a three-
stage algorithm for crack detection. First, cracks were removed using a
geodesic shading removal algorithm. Then, tensor voting was used to
create a probabilistic map of the cracks. Finally, a graphical model was
used to determine the shape of the cracks.

At present, there are few studies on the use of deep learning tech-
niques for detecting cracks in shaded environments. Previous studies
have primarily employed a staged detection method, which can result in
a significant reduction in inference speed. To solve this problem, we
have integrated a shadow processing module into a deep neural
network, which allows us to achieve crack segmentation in shaded en-
vironments in one stage.

The main contributions of this article are as follows:

1. A novel crack segmentation algorithm used in shadowed environ-
ments (SCSNet) was proposed, which mainly involved the discrete
cosine transform, shadow removal, and pixel frequency loss
components.

2. A dataset containing 4776 pavement cracks in shaded environments
was proposed for training and evaluating different models.

3. The discrete cosine transform module (DCT) was proposed to
maintain the important crack information while removing the
redundant shadow and background information.

4. A dual-branch shadow removal module (SRM) based on depthwise
separable convolution was proposed to reduce the impact of shadows
on the effectiveness of crack segmentation.

5. Pixel frequency loss was proposed to evaluate the effectiveness of the
output of SRM. This loss function is calculated by Kullback-Leibler
Divergence to compare the pixel distribution after shadow removal
with the pixel distribution of the shadow-free dataset.

The structure of the whole paper can be divided as follows: Section 2
focuses on the structure of the SCSNet, Section 3 includes the intro-
duction of the dataset, Section 4 will present the details of the evaluation
metrics and training, Section 5 contains the results and discussion, and
Section 6 is the conclusion.

2. Our proposed method

2.1. The total model

The structure of SCSNet is introduced in this section and is shown in
Fig. 2. Images of any size can be input into SCSNet and transformed into
images of 512 × 512 resolution. The input image is first passed through
SRM to minimize the effect of shadows on the cracks and then different
features are extracted by convolutional module (Conv). In Fig. 2, I equal

to 512.
SCSNet primarily comprises an encoding part and a decoding part.

The encoding process extracts and compresses features from the input
images, while the decoding process recovers these features and gener-
ates high-resolution segmented images, thereby achieving high-
precision image segmentation. In the encoding part, the feature maps
with resolutions of I/2, I/4, I/8, and I/16 are sequentially obtained after
Conv and the downsampling module. These feature maps are then
processed by the DCT to extract important channel feature information.
In the decoding part, the feature map with the resolution of I/16 is
sequentially upsampled to obtain the feature maps with the resolutions
of I/8, I/4, I/2, and I, respectively. The feature maps processed by DCT
are concatenated with the feature maps obtained from upsampling in the
channel direction. In the end, the detection result map with a resolution
of 512 × 512 is obtained.

There are three main loss functions used in the study, including focal
loss, dice loss, and pixel frequency loss proposed by us. The formula is
shown in (1)–(3). There is a class imbalance because of the large gap
between the number of cracked pixels and the number of background
pixels. Thus, focal loss is applied to solve this problem. Dice loss is
mainly used to evaluate the similarity between predicted and true
values.

Lloss = Lfl + Ldl + Lpfl (1)

Lfl =
{
− (1 − p̂)γ logp̂ if y = 1
− p̂γlog(1 − p̂) if y = 0 (2)

Ldl = 1 −
2*pred ∩ true
pred ∪ true

(3)

where Lfl, Ldl, and Lpfl denote focal loss [36], dice loss, and pixel fre-
quency loss [37], respectively. γ is equal to 2 in this study. Pred means
the set of predicted values and true indicates the set of true values.

The specific details of SRM, DCT, and Lkl are introduced in the
following sections.

2.2. Discrete cosine transform module

DCT is a variation technique commonly used in signal and image
processing, especially in image compression. It can transform images
from the spatial domain to the frequency domain, which helps to remove
redundant information while maintaining important features. According
to the conclusions of [38,39], the application of global average pooling
in channel attention means that only the lowest frequency information is
maintained, while all other frequency features are dropped. The DCT
can capture the components of multiple frequencies in the channel, thus
improving the feature extraction capability of the model. In this study,
we use the DCT module in the proposed model to compress the channel
information, preserve the information of the important channels, and
overlook the information of the channels that are severely affected by
shadows.

DCT can be realized by element-by-element multiplication, and it is
differentiable, so it can be easily integrated into CNN. In two di-
mensions, the common DCT is shown (4)–(5).

Bi,j
h,w = cos

(
πh
H

(

i+
1
2

))

cos
(

πw
W

(

j+
1
2

))

(4)

f2dh,w =
∑H− 1

i=0

∑W− 1

j=0
x2di,j B

i,j
h,w (5)

where h, i ∈ {0,1,…,H − 1},w, j ∈ {0,1,…,W − 1}, x2di,j represents the
input feature map (x2di,j ∈ ℝH×W), H and W are the height and width of
x2di,j .

First, the feature map with shape (C,W, H) is divided into n parts, as
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shown in Fig. 3. Each part can be represented by xi, and its size is (C′,W,
H), where i ∈ {0,1,…, n} and Cʹ = C

n. Then, each part of the feature map
is assigned a DCT with different frequency components to compress the
channel information, and this process can be described by (6).

Xi = DCTui ,vi
(
xi
)
=

∑H− 1

h=0

∑W− 1

w=0
xiBui ,vi

h,w s.t.i ∈ {0,1,…, n − 1} (6)

where ui, and vi are the frequency component 2D indices corresponding
to xi, and the size of Xi is (Cʹ,1, 1). In this study, n was set to 16, and the
settings of the frequency components of the DCT are shown in Table.1.
The values of frequency components are referenced to [38]. Many DCT
components were proposed in that paper and later we would analyze the
reasons for adopting that component.

After that, we can merge Xi in the channel direction to get the DCT
results for the different channels, as shown in (7). Finally, F was
sequentially passed through the Linear, ReLU, Linear, and Sigmoid
layers to obtain feature maps of size (C,1,1). These feature maps were
multiplied with the original input feature maps (X) to obtain the final
results. The initial linear layer primarily serves to transform the feature
representations. Subsequently, these features pass through a ReLU
activation function, after which a second linear layer adjusts and
strengthens them. The Sigmoid function scales the features to a range
between 0 and 1, facilitating the generation of weight information for
the feature points. In summary, these network layers enhance critical
crack information while suppressing noise-related data such as shadows,

thus improving model performance. The total process can be shown in
(8) and Fig. 3.

F = Concat
(
X0,X1,…,Xn− 1) (7)

Xoutput = X× Sigmoid(Linear(ReLU(Linear(F) ) ) ) (8)

2.3. Shadow removal module

The input to the segmentation model is images of pavement cracks
with shadows. To minimize the influence of shadows on the accuracy of
crack segmentation, we propose a dual-branch shadow removal module
(SRM) based on the idea of [32], the structure of which is shown in
Fig. 5. We hypothesize that the channels contain varying degrees of
shadow information. To prove this hypothesis, we plotted the histogram
of the frequency distribution of the RGB channels of the crack image
with shadows, as shown in Fig. 4. The observed similarity among the
peaks of the RGB channels is noteworthy. The first significant peak
consists mainly of the effect of shadows on the pixel frequencies, and we
can find that the pixel frequencies around this peak are not the same, so
we can prove that our hypothesis is correct. Thus, depthwise separable
convolution (DSC) [40] was employed to integrate features across
different channels.

In Fig. 5, the feature map with shape (3, H, W) was firstly passed
through DSC to get the feature map of (4,H,W), then it was processed by
normal convolution for shadow removal and kept the channels un-
changed. Finally, DSC decreased the channels to 3 to get fsr. The sec-
ondary branch primarily determines the importance of each channel
through convolution and pooling, and the sigmoid function was used to
get the importance coefficient w. Upon obtaining w and fsr, the input
feature map of the segmentation model was calculated by (9) with 3
channels.

xsr = x×(1 − w)+ fsrw (9)

where x indicates the original input image, and w represents the
importance coefficient.

To better explain the function of fsr, w, and xsr in Fig. 5, we plotted a

Fig. 3. Network structure of SCSNet.

Table 1
Frequency components of DCT.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ui 0 0 6 0 0 1 1 4 5 1 3 0 0 0 3 2
vi 0 1 0 5 2 0 2 0 0 6 0 4 6 3 5 2

Fig. 4. Histogram of frequency distribution for different channels.

Fig. 5. Shadow removal module.

Y. Zhang and C. Liu
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schematic diagram of the shadow removal process, as shown in Fig. 6. fsr
is primarily utilized to extract the feature information of shadows, while
w is employed to emphasize the significance of the three channels. By
integrating fsr, w, and xsr, shadow-attenuated images can be obtained.

2.4. Pixel frequency loss

In the previous study, we proposed a SRM module for diminishing
the effect of shadows on crack segmentation. However, the effectiveness
of the output of this module is difficult to evaluate, so we propose a pixel
frequency loss (PF loss) for supervision of the effectiveness of the SRM.

We counted the pixel frequency distribution of all images in the crack
dataset containing shadows, as shown in Fig. 7. The histogram of the
frequency distribution of pixels in the shadow-free pavement crack
image shows a single peak. However, the histogram exhibits a double
peak distribution in the shadow dataset. This phenomenon is shown in
Fig. 7. This is primarily because shaded areas are darker, leading to a
lower peak in the histogram's gray value, whereas non-shaded areas,
being brighter, exhibit a higher gray value peak. We expect the feature
maps after SRM processing to have pixel distributions similar to those
without shadows. Therefore, we used the Kullback-Leibler divergence to
measure the difference between these two distributions, which can be
seen in (10). Lpfl represents the pixel frequency loss. A smaller Lkl in-
dicates a lower variance between the true value and the predicted value,
and conversely, a larger Lkl signifies a greater discrepancy. Kullback-
Leibler divergence is an asymmetric measure of the difference be-
tween two probability distributions. It is non-negative and equals zero if
and only if yi = ti, representing the additional information required to
encode data from distribution yi using distribution ti. KL divergence is
widely used in model selection, feature selection, anomaly detection.

Lpfl =
∑255

i
yi × ln

yi
ti + e− 9

(10)

where tmeans the output of SRM, and y is the ground truth. This process
can be seen from Fig. 8.

3. Shadowed crack dataset

Upon reviewing the literature, it was found that the majority of road
crack datasets were collected in well-lighted environments, such as
Crack500 [41], Crack Forest Dataset (CFD) [42], and DeepCrack [43].
There are very few images in these datasets that have shadows, which
makes it inconvenient to carry out crack segmentation studies under
such conditions. Considering the difficulty of constructing a dataset
from scratch, we added shadows to the images using digital image
processing based on the open-access cracks image dataset.

We mixed Crack500 with the CFD dataset to get a total of 4776 crack
images in jpg format. First, we created a 4-channel fully transparent
image with the same size as the original image. Then we defined the
color and transparency of the shadows in the transparent layer (it was
set to 200, where 255means completely opaque and 0means completely
transparent). Next, polygonal, elliptical, or rectangular shadows were
randomly generated and applied to the full-transparent image. A
Gaussian blur filter was then applied to process the shadow layer. After
all this had been done, the original image was merged with the blurred
shadow layer to get the shadow image in PNG format. During the
training process, we reconverted the images from PNG format to JPG
format. The whole process is shown in the code below. Examples of the

Fig. 6. Illustration of shadow removal process.

Fig. 7. Pixel frequency distribution histogram.

Fig. 8. Pixel frequency loss.

Fig. 9. Samples of shadowed crack dataset.

Y. Zhang and C. Liu
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generated data are shown in Fig. 9. We call this dataset the shadow crack
dataset (SCD).

Common objects around the road include tree branches, road signs,
and neighboring buildings, all of which can cause shadows of different
shapes. Therefore, the shapes of the shadows created by us are similar to
the common objects around the road, which can be seen in Fig. 9. To
reduce the workload of data labeling, we used the matching labeled files
in Crack500 and CFD datasets. For the images that lacked annotation

files, the labeling work was performed manually. The final dataset
contains 4776 images. We divided the SCD dataset into training sets,
validation sets, and test sets according to the ratio of 8:1:1.

4. Model training process

4.1. Software and hardware versions

All models in this study were trained under the following environ-
ments as shown in Table 2. In our initial experiments, SGD required
significant hyperparameter tuning and exhibited slower convergence
compared to Adam. Therefore, Adam optimizer was used by us.

All models were trained for 200 epochs. The loss observed in both
training and test sets is shown in Fig. 10, and we can see that after the
number of training epochs is larger than 100, the loss value gradually
tends to stabilize, which indicates that the model has reached a state of
convergence.

Table 2
Software and hardware versions of training.

Content Versions Content Versions

CPU Intel i9-13900K Learning rate 1e-4
GPU Nvidia RTX 4090 Batch size 8
Operating system Ubuntu 20.04 Epochs 200
Python 3.8.18 Momentum 0.937
PyTorch 2.1.0 Number worker 4
RAM 128GB Optimizer Adam

Fig. 10. Train and val loss during training.

Procedure Create_shadows(file)

if file is jpg format then

Open images

Create shadow_layer with the same size as images, fully transparent

Define shadow color with partial transparency (200)

Define polygon, ellipse, and rectangle drawing subroutine

Select a random drawing subroutine and execute it

Apply Gaussian blur to shadow_layer

Composite shadow_layer onto images

Save the resulting image to disk with a new filename

end if

end procedure

Y. Zhang and C. Liu
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4.2. Model evaluation metrics

In this study, Accuracy, mean Intersection over Union (mIoU), and
mean Pixel Accurazcy (mPA) are used as the evaluation metrics. These
metrics can be obtained based on true positives (TP), false negatives
(FN), false positives (FP), and true negatives (TN). We can get the defi-
nition of the above variables according to Fig. 11. TP indicates correctly
predicted positive samples, TN represents negative samples predicted
correctly, FP denotes negative samples incorrectly predicted as positive,
and FN refers to positive samples incorrectly predicted as negative.

Pc =
TP

TP+ FP
(11)

Pb =
TN

TN+ FN
(12)

mPA =
1
2
(Pc +Pb) (13)

Accuracy =
TP+ TN

TP+ FN+ FP+ TN
(14)

IoUc =
TP

TP+ FN+ FP
(15)

IoUb =
TN

TN+ FN + FP
(16)

mIoU =
1
2
(IoUc + IoUb) (17)

The mPA can be obtained from (11)–(13), where Pc denotes the
Intersection over Union (IoU) of the cracks and IoUb represents the IoU
of the background. Accuracy represents the ratio of the number of pixels

correctly classified to the total pixel count, which can be seen from (14).
The mIoU can be obtained from (15)–(17), where IoUc denotes the
category pixel accuracy of the cracks and IoUb represents the category
pixel accuracy of the background.

5. Results and discussion

5.1. Comparison of the original dataset with the SCD dataset

In this section, we focus on comparing the performance of the seg-
mentation model on the original dataset with the SCD dataset.

U-Net [19], Segformer [44], PSPNet [45], HRNet [46], and Deeplab
V3+ [47] were used to verify that the existence of shadows affects the
overall detection accuracy, and this result can be seen in Table.3. These
models were trained on shadow-free dataset as well as shadow dataset,
respectively. It is worth noting that all three metrics of detection are
considerably lower when shadows are present than when there are no
shadows. The presence of shadows typically reduces the mIoU values by
about 2%, which is a very significant effect. Thus, the results demon-
strate that the presence of shadows can cause misdetection of cracks,
thus reducing accuracy. The principal reason for this outcome is that the
edge characteristics of shadows are typically more similar to those of
cracks, so models recognize the shadow edges as cracks.

In addition, the pre-training weights also have a significant impact
on the segmentation accuracy of the cracks. Pre-training weights usually
refer to the weight files obtained by training the model on large datasets
such as COCO or VOC. These weights can speed up the training process
to reach a converged state. The results can be seen from Table.3. For U-
Net, PSPNet, HRNet, and Deeplab v3+, which are based on convolu-
tional neural networks, the utilization of un-pretrained weights have
been observed to result in a reduction in segmentation accuracy. Among
these models, U-Net is the most affected, while PSPNet is the least
affected.

For U-Net, PSPNet, HRNet, and Deeplab v3+ which are based on
convolutional neural networks, not using pre-trained weights decreases
the detection accuracy. Among them, U-Net was the most affected and
PSPNet was the least affected. A 10% decrease in accuracy was observed
for the Transformer-based Segformer model, which lacked pre-training
weights. The primary reason for this is the complexity of the Trans-
former model and the number of parameters it contains. Training a
transformer model from scratch requires significant GPU resources and
time. In this study only 200 epochs were trained, making it difficult to
train the model to a converged state.

Table 3 demonstrates that both the pre-training weights and the
presence of shadows significantly affect the segmentation accuracy of
the cracks. Since the SCSNet proposed in this study is the latest network,
all parameters are randomly generated using normal distribution in the
training phase.

5.2. Ablation study

To demonstrate the validity of the individual modules, ablation ex-
periments were performed and the results are shown in Table.6. When
the discrete cosine transform (DCT) is added to the baseline, the mIoU
value increases from 75.24 to 77.92, which is a significant improvement
for crack segmentation. DCT can transform crack images from the spatial
domain to the frequency domain, where the frequency domain can

Table 3
Comparison of original dataset with SCD dataset.

Model Pre-training Dataset mIoU mPA Accuracy

UNet [19]
√ shadow-free 79.58 87.80 97.91
√ shadow 77.52 85.43 97.69

shadow 75.24 83.38 97.41

Segformer [44]
√ shadow-free 78.53 84.25 97.73
√ shadow 76.64 81.97 97.76

shadow 64.40 68.25 96.60

PSPNet [45]
√ shadow-free 79.50 87.15 97.93
√ shadow 78.28 85.58 97.81

shadow 78.22 85.45 97.74
√ shadow-free 80.37 87.95 98.03

HRNet [46] √ shadow 78.66 85.79 97.87
shadow 77.49 84.90 97.66

Deeplab v3+ [47]
√ shadow-free 80.67 89.07 98.02
√ shadow 78.24 85.71 97.80

shadow 77.17 85.43 97.56

Table 6
Ablation experiment.

Model mIoU mPA Accuracy

Baseline 75.24 83.38 97.41
+DCT 77.92 86.19 97.69
+DCT + SRM 78.33 86.43 97.81
+DCT + SRM + PF Loss 79.52 87.67 97.93

Fig. 11. Confusion matrix for binary classification.
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effectively capture edge and texture information in the images. These
features are crucial in semantic segmentation tasks. Additionally, DCT
can maintain important high-frequency information while removing
unnecessary low-frequency information in shadowed environments.
Such operations can reduce the interference from noise like shadows,
thereby improving the model's robustness and accuracy. DCT can also
enhance the contrast and details of the image, enabling better dis-
tinguishing the edge information of the cracks. Combining the above
factors, DCT can significantly improve the accuracy of crack
segmentation.

The SRM module can further improve the accuracy of the model
based on the DCT module. Because the SRM module is located between
the network input and the backbone. Before the model processes the
crack images, the SRM module fades shadows through a dual-branch
structure, thereby reducing the impact of shadowed environments on
crack segmentation. Compared to DCT, the improvement in mIoU and
other metrics by the SRM module was smaller, primarily because the
SRM module cannot fully control the effect of fading shadows. In com-
bination with the PF loss function proposed in this study, the mIoU, as
well as mPA metrics, were significantly increased. This is because the
frequency of the pixel distribution of the crack images in the shadow-
free dataset is taken as the ground truth to control the effect of
shadow removal by the SRM module. The frequency distribution of
crack images with shadows typically exhibits a double peak, whereas
those without shadows display a single peak. By designing the frequency
distributions of both types of images as a loss function, we can control
the effectiveness of the SRM module, leading to significant improve-
ments in various metrics.

The ablation experiment also indicated that all three tricks proposed
in this study (DCT module, SRM module, and PF loss) are effective for
crack segmentation.

In this study, PF Loss specifically optimizes the SRM module during
training. Therefore, the SCSNet network could be considered a serial
ensemble learning model that combines the “SRM + PF loss” with
“Baseline + DCT”. We performed a comparison of the results of end-to-
end training with serial ensemble training. First, the SRM + PF Loss
(Model 1) and the DCT module (Model 2) were trained separately by us,
and the rest of the parts were kept the same except for the difference of
the modules. After obtaining the individual results, we placed Model 1
and Model 2 in parallel within the same framework. The outputs from
Model 1 and Model 2 were fed into a simple classifier to verify consis-
tency with the results of end-to-end training, as detailed in Table. 7.

The results demonstrate that end-to-end training surpasses serial
ensemble training across all evaluation metrics, including mIoU, mPA,
and Accuracy. This is due to the fact that end-to-end training can better
coordinate the parameter tuning between the two modules and reduce

the accumulation of errors from independent training.

5.3. Comparison of different models

Table 4 shows a comparison of the results of our proposed SCSNet
model with common segmentation models under shaded conditions. It is
important to note that these compared models were trained based on
pre-trained weights, while SCSNet models were trained from scratch.
Our proposed SCSNet model achieved the best results in all three met-
rics. Under shadow conditions, themIoU value of SCSNet reached 79.52,
which is higher than the second-place HRNet with a score of 78.66. This
means that SCSNet performs better in distinguishing the boundaries
between background and cracks. This is because the wrong segmenta-
tion of crack pixels typically occurs at the edge of the cracks. The
commonly used semantic segmentation models are not good at seg-
menting the edge of the cracks, although they can segment the
approximate location where the cracks are located. Under the interfer-
ence of shadow edges, segmentation accuracy can further decline. The
fact that SCSNet can be optimal in mIoU is enough to prove that it can
well handle shadow segmentation tasks under shadow interference.

The mPA value of SCSNet reaches 87.67, which is 2% higher than
other models, which is a significant improvement in the field of crack
segmentation. The higher mPA value means that SCSNet can better
distinguish cracks from shadowed pixels. Even though shadowed pixels
can have a significant impact on the segmentation results, SCSNet can
reduce the interference of shadows on the segmentation of crack pixels
with the help of SRM, DCT, and PF loss. Almost all the background pixels
can be correctly predicted, and only those pixels located at the edges of
the cracks are susceptible to being mispredicted. Since the number of
these pixels is too small compared to the number of background pixels,
the Accuracy values are all high. SCSNet achieved an Accuracy value of
97.93, which is the optimal value among all models.

To further validate the effectiveness of the SCSNet model, we tested
the accuracy of SCSNet in the shadow-free dataset, as shown in Table.5.
Table.5 indicates that the accuracy of all models improved in the
absence of shadow interference. SCSNet still outperforms the compared
models, demonstrating its performance in crack segmentation. The
mIoU value for crack segmentation was improved to 81.89 by SCSNet,
which is still superior to the well-performing HRNet and Deeplab v3+
models. HRNet mainly improves the accuracy of the model by fusing
feature maps of different scales. However, SCSNet mainly extracts the
important channels containing crack feature information through DCT.
The results in Tables.4 and 5 indicate that channel information is often
more critical in crack segmentation.

In addition, we conducted experiments to evaluate the inference
speed of each model, with the results presented in Table. 4. Frames per
second (FPS) served as the criterion for assessing model inference speed,
representing the number of images the model can process in one second.
The results in Table. 4 were obtained using RTX 4090. From the table we
find that PSPNet exhibits the highest inference speed, while HRNet
demonstrates the slowest, and SCSNet is only better than HRNet. This
performance discrepancy is attributed to the inclusion of both the SRM
and DCT modules in SCSNet, which increase the model's parameter and
computational complexity, thereby reducing its inference speed.

The detection results of SCSNet are shown in Fig. 12. Fig. 12 includes

Table 7
Results of serial ensemble training compared to end-to-end training.

Training mode Model mIoU mPA Accuracy

Serial ensemble training Model 1 78.61 86.89 97.83
Model 2 77.92 86.19 97.69
Model 1 + 2 79.29 87.33 97.89

End-to-end training 79.52 87.67 97.93

Table 4
Comparison of different models with shadows.

Model mIoU mPA Accuracy FPS

UNet [19] 77.52 85.43 97.69 67
Segformer [44] 76.64 81.97 97.76 70
PSPNet [45] 78.28 85.58 97.81 133
HRNet [46] 78.66 85.79 97.87 36
Deeplab v3+ [47] 78.24 85.71 97.80 69
SCSNet 79.52 87.67 97.93 54

Table 5
Comparison of different models without shadows.

Model mIoU mPA Accuracy

UNet [19] 79.58 87.80 97.91
Segformer [44] 78.53 84.25 97.73
PSPNet [45] 79.50 87.15 97.93
HRNet [46] 80.37 87.95 97.93
Deeplab v3+ [47] 80.67 89.07 98.02
SCSNet 81.89 90.12 98.15
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the original image with shadows, the ground truth, and the detection
results of HRNet and SCSNet. The results show that the shadow region
has a large impact on the HRNet model, and it is difficult to recognize
the cracked pixels within the shadow range. The detection results of
SCSNet are close to the ground truth, which further proves the perfor-
mance of SCSNet.

5.4. DCT frequency components

In the selection of DCT frequency components, 18 DCT components,
as specified in [38], were tested. Only the names of the components are
listed here, the specific parameters can be found in that paper. From
Table. 8, we can see that the parameters we used are the best among all
the results.

5.5. On-site experiment

To validate the robustness of the SCSNet model, we collected several
pavement crack images in complex environments from Hong Kong. The
detection results of SCSNet are shown in Fig. 13. HRNet, which has
shown good segmentation performance, was used as a comparison
benchmark in our study. There is serious noise in our captured images.
From the segmentation results, we can observe that HRNet exhibits a
large number of mispredictions, whereas our proposed SCSNet can
accurately segment the cracks present in the images. Although the seg-
mentation is not effective in some details, this experiment is sufficient to
demonstrate that SCSNet can minimize the effect of surrounding noise
on crack segmentation.

6. Conclusions

To address the impact of roadside buildings or trees on pavement
crack segmentation, this paper presents a model called SCSNet for seg-
menting pavement cracks in complex environments such as shadows.
The innovations of the model are the discrete cosine transform module
(DCT), the shadow removal module (SRM), and the pixel frequency
distribution loss function (PF loss). Ablation experiments show that the
DCT module mainly transforms crack image information from the
spatial domain to the frequency domain, retains important high-
frequency information, and removes low-frequency interference. This
enhances the accuracy of crack segmentation in shadowed environ-
ments. The combined use of the SRM module and the PF loss allows
SCSNet to effectively mitigate shadows and further enhance the accu-
racy of crack segmentation in shadowed environments. Comparison
with classical semantic segmentation models shows that our proposed
SCSNet model consistently achieves higher crack segmentation accuracy
than models based on convolutional neural networks or Transformer
architectures, regardless of the presence or absence of shadow inter-
ference. In addition, the strong robustness of SCSNet has been proven by

Fig. 12. Segmentation results of SCSNet.

Table 8
Results of different DCT frequency components.

Frequency components mIoU mPA Accuracy

this paper 77.92 86.19 97.69
top32 77.32 85.71 97.45
top8 77.44 85.7 97.47
top4 77.14 85.87 97.4
top2 76.29 84.77 97.51
top1 76.1 84.5 97.49
bot32 75.45 83.66 97.43
bot16 75.54 83.57 97.45
bot8 75.71 83.75 97.47
bot4 75.5 83.57 97.44
bot2 75.64 83.71 97.46
bot1 75.6 83.72 97.45
low1 76.07 84.55 97.48
low2 76.27 84.66 97.51
low4 76.19 84.44 97.51
low8 76.34 84.69 97.52
low16 76.44 84.82 97.53
low32 76.19 84.7 97.5
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on-site experiments. Therefore, the SCSNet proposed in this study can be
applied in real engineering to quantify the geometric characteristic in-
formation of cracks.

Although the proposed SCSNet exhibits advanced segmentation
performance, its inference speed is relatively slow, making real-time
pavement crack segmentation challenging. Future research could focus
on developing the lightweight crack segmentation network to achieve
real-time segmentation of cracks in complex environments. With the
development of large language models, these algorithms can be com-
bined with large language models to enable the generation of text in-
formation such as disease damage characteristics and maintenance
recommendations. The ultimate goal of this research should be to
develop fully automated pavement damage vehicles.
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