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Abstract
Precision segmentation of cracks is important in industrial non-destructive test-
ing, but the presence of shadows in the actual environment can interferewith the
segmentation results of cracks. To solve this problem, this study proposes a two-
stage domain adaptation framework called GAN-DANet for crack segmentation
in shadowed environments. In the first stage, CrackGAN uses adversarial learn-
ing to merge features from shadow-free and shadowed datasets, creating a new
dataset with more domain-invariant features. In the second stage, the CrackSeg
network innovatively integrates enhanced Laplacian filtering (ELF) into high-
resolution net to enhance crack edges and texture features while filtering out
shadow information. In this model, CrackGAN addresses domain shift by gen-
erating a new dataset with domain-invariant features, avoiding direct feature
alignment between source and target domains. The ELF module in Crack-
Seg effectively enhances crack features and suppresses shadow interference,
improving the segmentation model’s robustness in shadowed environments.
Experiments show that GAN-DANet improves the crack segmentation accu-
racy, with the mean intersection over union value increasing from 57.87 to 75.03,
which surpasses the performance of existing state-of-the-art domain adaptation
algorithms.

1 INTRODUCTION

Highway networks in various countries around the world
are developing faster and provide a good foundation for
economic development. However, highways may suffer
from cracks or potholes due to rain erosion and vehi-
cle cyclic loads. If these damages are not identified in
time, the scope of their influence will be further increased.
Cracks may cause rainwater to penetrate into the subgrade
structure, leading to material deterioration or reduced
structural strength,which can seriously affect traffic safety.
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Therefore, it is important to detect and repair pavement
cracks in time.
Currently, common pavement damage inspectionmeth-

ods include manual inspection, multifunctional defect
inspection vehicles and intelligent detection algorithms
(Meng et al., 2023; Yingchao Zhang et al., 2021). The man-
ual detectionmethod has high accuracy, but it requires the
closure of the detection section, which causes great incon-
venience to traffic (Yingchao Zhang et al., 2022). Multi-
functional defect inspection vehicles can detect defects in
pavements as well as subgrade, but their expensive price
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tag prevents them frombeing utilized in large-scale inspec-
tion scenarios. With the development of computer vision,
more and more scholars have begun to study the struc-
tures’ damage detection algorithms based on computer
vision (Yingchao Zhang & Liu, 2024c). These models can
be used in bridges, dams, airport runways, tunnels, and so
on.
Algorithms such as image classification (Hoang &

Nguyen, 2019), object detection (F. Yang et al., 2019), and
semantic segmentation (J. Liu et al., 2020) are all used to
implement intelligent crack inspection systems. The prob-
lem of crack image classification has been worked on for
many years. Recent research has focused on how to opti-
mize the training process or tune hyperparameters of crack
classification networks (Ottoni et al., 2023). Crack detec-
tion networks can not only fulfill the task of crack clas-
sification but also can detect the exact position of cracks
in the image. Therefore, the detection network is more
popular at present. A road crack detection model called
MUENet was proposed by He et al. (2023), which can solve
the problem of similarity between cracks and pavement
color well and also achieve better field detection results. G.
Zhu et al. (2024) proposed a lightweight encoder–decoder
network with hybrid attention and residual blocks for
accurate and efficient pavement crack detection, achiev-
ing state-of-the-art performance across multiple datasets
and real-time detection at 25 FPS with only 0.57 M param-
eters. Semantic segmentation is a technique to classify
the categories of pixels (García-Aguilar et al., 2023; Jiany-
ong Wang et al., 2023). Q. Zhu and Ha (2022) proposed a
bidirectional self-rectifying network with Bayesian mod-
eling for improving the segmentation accuracy of cracks.
The convolution kernel randomized by Bayesian model-
ing significantly reduced the sensitivity of the model to
uncertainties and nonlinearities, and thus excellent crack
segmentation was achieved. In addition, ordinary differ-
ential equations (Hu et al., 2023) and dynamic instance
generation (Nardin et al., 2023) were also used to improve
the performance of segmentation models. Q. Zhu and
Ha (2022) proposed a bidirectional self-rectifying network
with a Bayesian model to enhance semantic segmentation
for surface inspection of built infrastructure, effectively
addressing uncertainty and nonlinearity to improve detec-
tion accuracy.
Although various models have been developed to detect

pavement cracks, environmental factors can have a serious
impact on the results when applied in practice (Yingchao
Zhang & Liu, 2024b). Yu Zhang and Zhang (2024) used
generative adversarial networks (GANs)were used to solve
the blurring problem of crack images. This is an envi-
ronmental factor worth considering. However, shadows
caused by buildings or trees on the side of the roadway
are the most common influencing factor. Crack detection

in shaded environments is challenging because it is dif-
ficult for the model to distinguish the edges of cracks
from shadows. Shadows can significantly reduce the pixel
contrast between the crack and the background. In low-
contrast situations, models may not be able to identify
the edges and details of cracks efficiently. Therefore, it is
challenging to segment crack pixels with high accuracy
in shadow environments. L. Fan et al. (2023) proposed a
two-stage method for crack segmentation in shaded envi-
ronments. This method primarily mitigates the impact
of shadow noise on crack segmentation by employing
shadow removal and data augmentation techniques that
leverage differences in luminance values. Yingchao Zhang
and Liu (2024a) developed a one-stage approach to crack
segmentation in shaded environments by integrating the
process of shadow removal into the network. A detection
model called CrackcellNet was proposed by H. Yang et al.
(2024), which contains amodule to enhance shadow image
data, improving the F1 value for crack detection in shad-
owed environments to 0.839. In addition, neural dynamic
classification algorithm (Rafiei & Adeli, 2017), finite ele-
ment machine (Pereira et al., 2020), dynamic ensemble
learning algorithm (Alam et al., 2020), self-supervised
learning (Rafiei et al., 2022, 2024) all have the potential in
the field of roadway defect segmentation, but their appli-
cation in crack segmentation is currently less common and
therefore will not be continued.
The aforementioned scholars are typically engaged in

the design of novel network architectures or modules with
the objective of addressing the challenge of crack segmen-
tation in shaded environments. They have also employed
fully supervised learning techniques to achieve highly
satisfactory outcomes. However, the acquisition of a sub-
stantial number of shaded datasets represents a significant
challenge. The number of samples in the publicly avail-
able crack datasets is approximately several hundred to
more than a thousand, of which only a few dozen con-
tain shadows. To obtain a better segmentation effect in the
shadowed environment, 800 to 1000 crack images in the
shadowed environment are generally required. Therefore,
GAN is commonly used to enhance data (Fu et al., 2024;
Leng et al., 2024). Zhong et al. (2024) used the residual
attention mechanism, a multi-field perceptual discrimi-
nator, and a self-encoder perceptual loss to improve the
performance of GAN. Although H. Zhang et al. (2024)
proposed a crack diffusion model to generate the dataset
of cracks under shadows or water traces, this dataset
differs significantly from real cracks. Because the sharp
edges and uniform patterns of the generated shadows dif-
fer from natural shadows, this may limit the realism of
the synthetic dataset. And natural shadows exhibit irreg-
ular shapes, soft edges, varying intensity, and dynamic
interactions with surface textures. These characteristics
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ZHANG and LIU 3

make them challenging to replicate in synthetic data, yet
critical for improving the generalization of segmentation
models in real-world environments. Xue et al. (2023) com-
bined evolutionary algorithms and attention mechanisms
to improve CycleGAN training stability and image gener-
ation quality by optimizing generator configurations and
enhancing feature learning.
Some scholars also used semi-supervised learning to

solve the problem of insufficient data. Díaz-Francés et al.
(2024) proposed a novel deep learning architecture that
combines ideas from EditGAN and generative diffusion
models to enhance semi-supervised image segmentation,
achieving improved performance onmulticlass and binary
segmentation tasks.
In summary, current research employs three main types

of methods to achieve crack detection in shaded environ-
ments:

1. Two-stage shadow removal approach: This method
first preprocesses images to eliminate shadows before
conducting crack detection. While straightforward to
implement, this approach risks losing crucial crack
detail information during the shadow removal process.

2. End-to-end single-stage approach: This strategy incor-
porates shadow removal directly within the detection
network architecture. Although this method preserves
feature integrity, it requires extensive training data con-
taining shadowed examples, which can be challenging
to obtain.

3. Data augmentation-based methods: These techniques
expand training datasets by artificially generating shad-
owed images. However, current shadow generation
methods often produce unrealistic results, with edge
characteristics and distribution patterns that deviate
significantly from natural shadows.

In addition, these methods mainly focus on global fea-
ture alignment, ignoring the importance of local edge
information in the crack detection task.
Therefore, many scholars began to explore the potential

of transfer learning in the domain of crack segmentation.
Transfer learning based on shared parameters has more
applications in the field of crack detection or segmenta-
tion (Q. Yang et al., 2020). Dais et al. (2021) improved
the segmentation accuracy of the cracks by 6% by fine-
tuning the pre-trained weights. Katsigiannis et al. (2023)
used pre-trained weights obtained from a large dataset to
classify wall cracks. Transfer learning enabled the accu-
racy to reach 99%. However, it is more difficult to obtain
pre-trained weights in large datasets such as common
objects in context dataset (COCO) or visual object classes
(VOC) when a novel model is proposed. To solve this prob-
lem, Çelik and König (2022) proposed a novel transfer

learning method. By using weights obtained from train-
ing on a dataset containing 1000 images as pre-trained
weights, the accuracy on different datasets can be sig-
nificantly improved. Transfer learning based on shared
parameters is relatively simple and easy to implement,
especially when the source and target domains are quite
similar. However, this approach also has some limitations.
The parameters of the source domain model may contain
too many features specific to the source domain rather
than general features of cracks. This can lead to overfitting
in the target domain during transfer learning.
Domain adaptation-based transfer learning is specifi-

cally used to handle the distribution differences between
the source and target domains. Among these methods,
GAN (Goodfellow et al., 2020) is a common approach.
GANs are commonly used by scholars to generate new
datasets or increase sample sizes (T. Zhang et al., 2023).
Maeda et al. (2021) proposed using GANs and Poisson
blending to generate realistic synthetic road damage
images, enhancing training data and improving road dam-
age detection accuracy. Gao et al. (2021) introduced the
balanced semi-supervised GAN, a GAN variant designed
to address data deficiency and class imbalance in struc-
tural health monitoring, achieving superior performance
in concrete damage detection through balanced-batch
sampling and semi-supervised learning. The method for
synthesizing crack images using a conditional GAN and
a self-training approach to enhance crack detection was
proposed by Shim (2024), addressing data scarcity and
achieving improved performance with an mean intersec-
tion over union (mIoU) of 80.34% and F1-score of 76.31%.
A transfer learning pipeline was proposed in Yishun Li
et al. (2021), where data transfer with GAN-based scene
style adaptation and model transfer via domain adapta-
tion are combined, enabling pavement distress detection
models to be applied across new scenarios, with training
data needs reduced by 25% and accuracy improved by
26.55%. A self-training framework based on a Bayesian
neural network and spatial prior was proposed to realize
high-precision automatic segmentation of concrete wall
cracks by unsupervised domain adaptation, which can
significantly improve the model performance with only
100 images of the target domain (Chun & Kikuta, 2024).
X. Fan et al. (2022) designed a GAN to enable the crack
segmentationmodel to learn features from both the source
domain and the target domain simultaneously. When the
GAN cannot distinguish whether the data come from the
source domain or the target domain, the crack segmenta-
tion task based on transfer learning is achieved. Ma et al.
(2023) developed a shape-consistent style transfer module
that performs pixel-level distributions between training
and test images so that the pixel distributions of the
training and test sets are consistent. This domain-adaptive
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4 ZHANG and LIU

approach substantially enhances the model’s robustness
against variations in crack distributions and achieves
superior crack segmentation.
In real-world inspection scenarios, existing computer

vision-based inspection methods encounter significant
limitations. A critical challenge arises from shadows cast
by buildings and trees onto pavements, which severely
impair crack detection accuracy. These shadows substan-
tially reduce the pixel contrast between cracks and their
surrounding background. Moreover, the textural charac-
teristics of shadowed regions closely resemble those of
actual cracks, frequently resulting in false positive detec-
tions. Based on the preceding analysis, while existing
methods employing GAN to generate shadow images can
augment datasets, the generated shadows often lack nat-
ural realism and fail to accurately replicate shadow char-
acteristics observed in real-world scenarios. Furthermore,
during shadowgeneration, the edge and detail information
of cracks becomes blurred, hindering the model’s ability
to effectively capture the integrity of crack features dur-
ing training. And domain-adaptive approaches primarily
focus on aligning the global feature distributions between
the source and target domains, often neglecting the fine-
grained features critical to the crack segmentation task.
This global alignment results in suboptimal extraction of
local boundary information for cracks in shaded environ-
ments. Given the critical importance of accurate crack
detection in shadowed environments and the limitations
of current research approaches, there is a pressing need
to develop robust detection methods capable of operat-
ing effectively under varying lighting conditions. GANs
have demonstrated remarkable capabilities in image syn-
thesis and domain adaptation tasks. Furthermore, domain
adaptation techniques offer promising solutions to address
domain shift challenges, making them particularly rele-
vant for this application. Therefore, this study proposed
an innovative method that synergizes GAN-based shadow
image generationwith domain adaptation, aiming to lever-
age the advantages of both approaches while mitigating
their respective shortcomings. Thismethod achieves better
detection by generating a new dataset with domain invari-
ance to overcome the problem of direct feature alignment
while maintaining the local detailed features of the cracks.
The main contributions of this paper can be summarized
as follows:

1. This paper proposed a GAN for fusing unshaded and
shaded datasets to reduce the distance between the
target and source domain. The crack segmentation net-
work was trained on the newly generated dataset and
excellent segmentation results can be obtained.

2. The crack segmentation network incorporated
enhanced Laplacian filtering (ELF). Most of the

F IGURE 1 Structures of GAN-DANet networks for pavement
crack segmentation in shaded environments.

shadow features were filtered out during feature
extraction, thus achieving excellent transfer effects in
the target domain.

3. The method was validated using actual datasets with
limited shadowed images, confirming its robustness
and applicability in data-scarce environments.

The rest of this paper is organized as follows: Sec-
tion 2 focuses on the research methodology proposed in
this paper. Section 3 introduces the crack datasets. Sec-
tions 4 and 5 present the Results and Discussion and the
Conclusion, respectively.

2 METHODOLOGY

2.1 Segmentation framework

To effectively detect pavement cracks in shaded environ-
ments, this research proposed a novel two-stage segmen-
tation algorithm named generative adversarial networks
and domain adaption network (GAN-DANet), which can
be seen in Figure 1. The first stage of GAN-DANet pri-
marily consists of CrackGAN. Due to the challenge of
acquiring a large number of images of cracks in shaded
environments, this study used 4776 real crack images and
100 artificial shadowed images as inputs to CrackGAN,
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ZHANG and LIU 5

TABLE 1 Definition of model components.

Symbol Definition
Domain A (Source domain) Datasets without shadows
Domain B (Target domain) Datasets with shadows
𝐺𝐴→𝐵 Convert the image of domain A to domain B
𝐺𝐵→𝐴 Convert the image of domain B to domain A
𝐷𝐴 Distinguish between the real image of domain A and the generated image
𝐷𝐵 Distinguish between the real image of domain B and the generated image

which generated a new dataset of realistic shadowed crack
images. These generated images were used as the train-
ing set for the segmentation network. A comprehensive
description of the dataset is provided in Section 3. In
Figure 1, the process begins with two distinct datasets:
domain A, which contains crack images captured under
normal lighting conditionswithout shadows (top-left), and
domain B, which includes crack images heavily influenced
by complex shadow patterns (top-right). These datasets are
utilized as input to the CrackGAN to produce a synthe-
sized domain C. Domain C is designed to combine the
characteristics of both datasets, effectively bridging the
gap between shadow-free and shadowed environments.
The generated domain C is then used to train the pro-
posed semantic segmentation model, which is optimized
to perform crack segmentation with high accuracy, even
under challenging shadow conditions. The bottom-right
image demonstrates the binary crackmap produced by the
segmentation model. In addition, to evaluate the robust-
ness of GAN-DANet, the trained segmentation model is
directly tested on the original datasets (domains A and B).
Despite the significant differences in lighting conditions
between the two datasets, our model achieves excellent
performance on both. The detailed structure of CrackGAN
andCrackSeg is described in the next section. Themethods
used in this study were chosen based on their effectiveness
in addressing shadow interference in crack segmenta-
tion, computational efficiency, and practical applicability
to domain-specific datasets.

2.2 Structures of CrackGAN

As shown in Figure 2, CrackGAN mainly consists of
two generators (GA→B and GB→A) and two discriminators
(DA and DB). Before the introduction of the model, this
research defined the symbols as shown in Table 1. The
generator is mainly used to realize the migration between
the source and target domains, while the discriminator is
used to determine whether the input image is from a real
image or a generated image. When the images produced
by the generator are highly realistic and the discrimi-
nator cannot distinguish them well, it suggests that the

CrackGANmodel has reached a state of convergence. The
components of CrackGAN are detailed sequentially in the
sections below.

2.2.1 Generator

The input images were initially normalized to adjust the
pixel values to a range between −1 and 1 to get the input
feature maps for the generator. Subsequently, these fea-
ture maps were processed through the CIR@7 module,
which utilizes 7×7 large convolutional kernels to capture
more contextual information. In addition, instance nor-
malization layer was also used to improve the stability and
convergence speed of training. The output feature maps
were sequentially processed by two CIR@3 modules with
nine base block modules. Convolutional kernels of 3 × 3
were used to extract features incrementally and reduce the
computational cost of the network in the CIR@3 architec-
ture. Base block used residual structures based on CIR@3
to alleviate the problem of vanishing gradients of deep
neural networks. The CTIR@3module utilized transposed
convolution for upsampling, effectively increasing the res-
olution of the feature maps. This is primarily because
transposed convolution has learnable parameters to learn
complex spatial feature transformations for detailed fea-
ture reconstruction. Finally, feature maps were processed
by the convolutional layer of 7×7 convolutional kernels
with an activation layer to get the generated images. The
generator of CrackGAN adopts a global-to-local feature
extraction strategy, where CIR@7 is used first to capture
broad contextual information with a larger kernel size,
followed by CIR@3 to refine local details with a smaller
kernel size. CIR@7 is critical for distinguishing cracks
from shadows and other large-scale patterns, while CIR@3
enhances the resolution of fine-grained features, such as
thin or faint cracks. CTIR@3 performs feature reconstruc-
tion and upsampling, increasing the spatial resolution of
the feature maps and recovering fine details. This hierar-
chical design ensures that the generator can handle cracks
of varying scales and appearances effectively.
The input and output of the generator GA→B are the

shadow-free crack images and generated images with
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6 ZHANG and LIU

F IGURE 2 Structures of CrackGAN. The picture shows the generator and discriminator structure of CrackGAN. The generator
comprised an input layer, multiple CIR@N and CTIR@3 layers, nine base blocks, and a tanh output layer. The discriminator consisted of an
input layer, a Conv@4×4 layer, an activation layer, CILR@4 layers, and an output layer.

fused shadow features, respectively. The input of generator
GB→A is real shadow images, and the output is generated
images with fewer shadow features. A total of three loss
functions are used in the image generation phase to ensure
that CrackGAN can be efficiently transformed between
different domains, including Identity loss, GAN loss, and
cycle loss.
Identity loss is mainly used to keep the color or other

basic features consistent. In particular, when an image of
the target domain is fed into the generator, the generator
should be able to output an image that is similar to the
input. The formulas are shown in Equations (1) and (2)
(J.-Y. Zhu et al., 2017), where x and y denote the data in
domains A and B, respectively. This loss allows the model
to maintain the parts of the image that do not need to be
changed when performing a style transformation.


𝐴
𝑖𝑑
= 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)

[
∥ 𝐺𝐵→𝐴 (𝑥) − 𝑥∥1

]
(1)


𝐵
𝑖𝑑
= 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)

[
∥ 𝐺𝐴→𝐵 (𝑦) − 𝑦∥1

]
(2)

where 
𝐴
𝑖𝑑
and 

𝐵
𝑖𝑑
denote the identity loss, which mea-

sures the ability of the generator to maintain the original
features of the image. 𝐺𝐵→𝐴(𝑥) represents the generator

that transforms from domain B to domain A, and 𝐺𝐴→𝐵(𝑦)
is the generator that transforms from domain A to domain
B. x and y are the input source and target domain images,
respectively. E represents the expected value.
GAN loss ismainly used to help the generator to improve

the quality of the generated images. The formulas are
shown in Equations (3) and (4) (J.-Y. Zhu et al., 2017),
where 𝐷𝐵(𝐺𝐴→𝐵(𝑥)) and 𝐷𝐴(𝐺𝐵→𝐴(𝑥)) represent the out-
put of the discriminator to the generated images. The value
of 𝐷𝐵(𝐺𝐴→𝐵(𝑥)) or 𝐷𝐴(𝐺𝐵→𝐴(𝑥)) is close to 1 when the
images generated by the generator are considered by the
discriminator to be real images. This allows the genera-
tor to produce images that can trick the discriminator. By
minimizing this loss, the generator is able to improve the
quality of the generated images.


𝐴→𝐵
𝐺𝐴𝑁

= 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)

[
(𝐷𝐵 (𝐺𝐴→𝐵 (𝑥)) − 1)

2
]

(3)


𝐵→𝐴
𝐺𝐴𝑁

= 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)[
(
𝐷𝐴 (𝐺𝐵→𝐴 (𝑦)) − 1)

2
]

(4)

where 𝐴→𝐵
𝐺𝐴𝑁

and 
𝐵→𝐴
𝐺𝐴𝑁

are the adversarial loss function.
A→B represents a transition from an unshaded domain to
a shaded domain,whileB→A does the opposite.𝐷𝐴 and𝐷𝐵
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ZHANG and LIU 7

are discriminators used to determine whether the image is
real or generated.
Cycle loss is mainly used to assist the model to learn the

ability to convert between different domains without los-
ing important information. Specifically, when images were
transformed from domain A to domain B and then from
domain B back to domain A, the final images obtained
should be as similar as possible to the original images.
The formulas are shown in Equations (5) and (6) (J.-Y. Zhu
et al., 2017).


𝐴→𝐵→𝐴
𝑐𝑦𝑐 = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)

[
∥ 𝐺𝐵→𝐴 (𝐺𝐴→𝐵 (𝑥)) − 𝑥∥1

]
(5)


𝐵→𝐴→𝐵
𝑐𝑦𝑐 = 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)

[
∥ 𝐺𝐴→𝐵 (𝐺𝐵→𝐴 (𝑦)) − 𝑦∥1

]
(6)

where 𝐴→𝐵→𝐴𝑐𝑦𝑐 and 𝐵→𝐴→𝐵𝑐𝑦𝑐 are the cycle loss.
The total loss in the generator is shown in Equation (7)

(J.-Y. Zhu et al., 2017). To adjust the different loss terms to
the samemagnitude to avoid one loss term dominating the
training, this research set theweighting coefficients 𝜆id and
𝜆cyc. The parameters 𝜆id, and 𝜆cyc were manually tuned
within the ranges 0–1 and 1–20, respectively. The results
were not highly sensitive to these parameters. Performance
metrics varied only slightly (e.g., within ±0.5% for mIoU
and ±0.5% for mean pixel accuracy [mPA]) when these
parameters were adjusted within their respective ranges.
Therefore, 𝜆𝑖𝑑 equals to 0.5, and 𝜆𝑐𝑦𝑐 equals to 10.

𝑇 = 
𝐴→𝐵
𝐺𝐴𝑁

+ 
𝐵→𝐴
𝐺𝐴𝑁

+ 𝜆𝑖𝑑
(

𝐴
𝑖𝑑
+ 

𝐵
𝑖𝑑

)
+ 𝜆cyc

(

𝐴→𝐵→𝐴
𝑐𝑦𝑐 + 

𝐵→𝐴→𝐵
𝑐𝑦𝑐

)
(7)

where 𝑇 𝑖𝑠 the total loss.

2.2.2 Discriminator

The structure of the discriminator is simpler, compared to
the generator, because it only needs to determine whether
the image is real or generated. First, input images went
through a 4×4 convolutional layer for initial feature extrac-
tion and were processed by a leaky rectified linear unit
(LeakyReLU) activation function layer. The output fea-
turemaps were then processed by three CILR@4modules.
Each CILR@4module contains a 4×4 convolutional layer,
instance normalization layer, and activation function layer.
The sequential stacking of the threemodules progressively
captures the multilevel features of the images. Finally, the
output of the discriminator is the probability value that the
input image is a real image. The losses during the training
of the two discriminators are shown in Equations (8) to (13)
(J.-Y. Zhu et al., 2017).

real_A = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[
(
𝐷𝐴 (𝑥) − 1)

2
]

(8)

fake_A = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)

[
(𝐷𝐴 (𝐺𝐵→𝐴 (𝑦)))

2
]

(9)

𝐷A =
(
real_A + fake_A

)
∕2 (10)

real_B = 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)
[
(𝐷𝐵(𝑦) − 1)

2
]

(11)

fake_B = 𝐸𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)

[
(𝐷𝐵 (𝐺𝐴→𝐵 (𝑥)))

2
]

(12)

𝐷B =
(
real_B + fake_B

)
∕2 (13)

where 𝐷𝐴(𝑥) represents discriminator A’s output for real
source domain image x, and 𝐷𝐵(𝑥) represents discrimina-
tor B’s output for real target domain image y. 𝐷𝐴 and 𝐷𝐵
are the total loss for discriminators A and B, respectively.

2.3 Structures of CrackSeg

Given the high accuracy of current semantic segmentation
networks, this study introduces the CrackSeg model for
shadow segmentation, which is based on high-resolution
net (HRNet; Jindong Wang et al., 2020). The structure of
CrackSeg is shown in Figure 3.
HRNet is used as the segmentation model for cracks

because of its powerful feature representation. HRNet
maintains high-resolution feature maps during feature
extraction while introducing low-resolution feature maps.
The feature maps of varying resolutions are continuously
fused, thereby enabling the model to capture richer con-
textual information while retaining texture information.
This is extremely important for crack segmentation, which
is sensitive to edge and texture information. In addition,
ELF (F. Zhang et al., 2024) was incorporated into the net-
work to augment the edge and detail information in the
image, which can be seen in Equations (14) to (15). In crack
edge feature detection, the second-order derivative of pix-
els is computed using the Laplace operator to emphasize
areas with rapid changes, effectively filtering out regions
where the pixel value changes are not obvious. In image
processing, low-frequency information includes large uni-
form color blocks and gradually changing color gradients,
whereas high-frequency information comprises primarily
edge and texture information. The ELF models were used
inCrackSegmainly to filter out low-frequency information
and retain high-frequency information. The ELF models
were embedded in the backbone of the model in order to
filter out redundant features as early as possible.

Δ𝐼 =
𝜕2𝐼

𝜕𝑥2
+
𝜕2𝐼

𝜕𝑦2
(14)

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝐼 + 𝛼 ⋅ Δ𝐼 (15)
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8 ZHANG and LIU

F IGURE 3 Structures of CrackSeg. 1/nmeans that the width and height of the feature maps are 1/n of the input image.

where I denotes the input feature maps, Δ𝐼 is the result of
Laplace operator processing, and 𝛼 indicates the enhance-
ment coefficient. The parameter 𝛼 was manually tuned
within the range 1–5. In this study, the model has better
performance when 𝛼 is set to 2. Various experimen-
tal results have demonstrated that it achieves the best
outcomes.

3 DATASETS

The main purpose of this study is to improve cracks
segmentation accuracy under shaded environments. In
the following, the dataset used by this paper will be
introduced.

3.1 Crack dataset without shadows

The primary datasets commonly utilized for the semantic
segmentation of cracks include Crack500 (F. Yang et al.,
2019), CrackForest dataset (Shi et al., 2016), andDeepCrack
(Y. Liu et al., 2019). Various horizontal cracks, longitu-
dinal cracks, and alligator cracks are included. Since the
focus of this research is on improving crack segmentation
accuracy in shaded environments through domain adapta-
tion rather than transfer learning across different datasets
without shadows, this research combined three datasets
to obtain a large dataset for cracks segmentation without
shadows.
In total, this research obtained 4776 images containing

pavement cracks. As these images originate from three
different datasets with varying resolutions, this research
adjusted the resolution of each image to 512×512 pixels
to ensure consistency. The dataset obtained after being
adjusted is represented in this study by D1 as shown in
Figure 4.

3.2 Crack dataset with shadows

Obtaining a large, high-quality dataset of real-world shad-
owed road distress images is a challenging and resource-
intensive task. Due to the lack of publicly available datasets
under shadowed conditions, this study adopted a syn-
thetic dataset generation approach to simulate shadow
patterns. This approach enables us to train the model
effectively while addressing the scarcity of annotated data
under such conditions. Therefore, this study utilizes the
generated cracks dataset with shadows from Yingchao
Zhang and Liu (2024a). These images were created by
mixing the generated shadow layers with the standard
crack images. Compared to traditional shadow generation
methods, which often rely on fixed patterns or geomet-
ric models, CrackGAN generates shadows that are more
diverse and realistic, featuring irregular shapes, varying
intensities, and soft transitions. Additionally, it preserves
the structural integrity of cracks, ensuring that the gen-
erated images remain suitable for crack segmentation
tasks.
The process of generating shadows includes the fol-

lowing steps (Yingchao Zhang & Liu, 2024a): Initially, a
transparent layer matching the original image’s dimen-
sions is generated, followed by defining the shadow’s color
and transparency. The transparency of the shadows in this
study was set to 30. Next, ellipse, rectangle, and polygon
shapes are randomly generated and drawn on the transpar-
ent layer. Finally, a Gaussian blur is applied to the shadow
layer to soften the edges of the shadows, making them
more closely resemble actual shadows. This research called
this dataset D2 as shown in Figure 5. A visual inspection of
the artificial shadows reveals that they closely resemble the
overall appearance of real-world shadows. For example,
elliptical shadows emulate those cast by roadside traffic
signs, while polygonal shadows mimic the irregular pat-
terns of shadows caused by tree branches. These design
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ZHANG and LIU 9

F IGURE 4 Instances of D1. Examples of pavement crack datasets without shadows.

F IGURE 5 Instances of D2. Examples of pavement crack datasets with shadows.

choices ensure that the artificial shadows introduce real-
istic shadow-induced challenges into the dataset, such as
reduced pixel contrast and obscured crack edges.
This research compared the pixel frequency distribu-

tions of natural shadows, artificial shadows, and images
without shadows as shown in Figure 6. The histogram is
used to compare pixel intensity distributions among differ-
ent images. This allows this study to evaluate the fidelity
of the generated images in terms of pixel-level intensity
preservation and identify any potential artifacts or devia-
tions. The image without shadows exhibits more uniform
brightness, characterized by a sharp peak, indicating the
absence of distinctly dark or bright pixels. Imageswith nat-
ural shadows display a peak in regions of lower brightness,
suggesting an increased presence of dark pixels or shad-
ows. For images with artificially generated shadows, while
they lack the clear bimodal distribution characteristic of
natural shadows, these artificial shadows still influence
the image’s gray value distribution, shifting it toward lower
gray values. The gray value distributions of both natural
and artificial shadows are significantly different from those
of the unshaded image, exhibiting the expected shadow
characteristics. In addition, while artificial shadows may
lack the full complexity of dynamic real-world shadows,
their design effectively captures the essential characteris-

tics needed to train domain adaptation models. Therefore,
this research can consider these generated shadows to be
valid. In this process, the total number of images of cracks
in shadow generated was 100.
In total, this research obtained 4776 images containing

pavement cracks. As these images originate from three
different datasets with varying resolutions, this research
adjusted the resolution of each image to 512×512 pixels
to ensure consistency. The dataset obtained after being
adjusted is represented in this study by D1 as shown in
Figure 4.

4 RESULTS AND DISCUSSION

4.1 Training environment and
hyperparameters

The various software and hardware versions used dur-
ing training are shown in Table 2. The stochastic gradient
descent optimizer was used to update the parameters of
the model during the training process. The initial learn-
ing rate was set at 0.004 and was subject to cosine decay,
with a minimum value established at 0.00004. The cosine
decay algorithm smoothly adjusts the learning rate to avoid
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10 ZHANG and LIU

F IGURE 6 Histogram of pixel frequency distribution for different images.

oscillations in the model during training. In summary, the
models were all trained to convergence according to the
hyperparameter settings in Table 2.
When training the CrackGAN, only 100 pavement dam-

age images in shaded environments were used as the train-
ing set. This is significantly fewer than what is typically
used in fully supervised learning methods for pavement
damage detection in similar conditions (Yingchao Zhang
& Liu, 2024a).

In addition, this study addresses a domain adaptation
problem. The model is trained exclusively on domain A
and evaluated on both domain A and domain B. Domain B
represents an unseen domain with a different data distri-
bution, which naturally results in lower performance due
to domain shift. To ensure the reliability of the reported
results, this study averaged the metrics over five inde-
pendent runs with different random seeds, accounting for
fluctuations during the training process.
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ZHANG and LIU 11

TABLE 2 The versions of software and hardware.

Item Version Item Version
CPU Intel i9-13900K Optimizer SGD
GPU 2 × NVIDIA RTX 4090 Learning rate 4e-3
OS Ubuntu 20.04 Min learning rate 4e-5
RAM 128 GB Learning rate decay Cosine decay
PyTorch 2.2.1 Epoch 200
Python 3.8.18 Momentum 0.9
CUDA 12.1 Batch size 8

Abbreviation: CUDA, Compute unified device architecture. SGD, stochastic gradient descent.

4.2 Evaluation metrics

This study addresses the semantic segmentation of cracks,
so mIoU, mPA, and accuracy were selected as the eval-
uation criteria to evaluate the model’s performance. The
mIoU is mainly used to measure the degree of overlap
between the predicted and the true region and is calculated
as shown in Equation (16). mPA represents the average
ratio of each pixel being correctly classified. Compared
to mIoU, mPA more directly reflects the pixel-level accu-
racy of the model. The formula is shown in Equation (17).
The accuracy indicates the proportion of all correctly clas-
sified pixels to the total pixels. The formula is shown in
Equation (18). Although accuracy provides a performance
metric that can be calculated quickly, it may not be sensi-
tive enough in the case of class imbalance. This is because
even if a few categories are completely misclassified, as
long as the majority of categories are classified correctly,
the accuracy may still be high, which is particularly true
in the field of crack detection in shaded environments.
Therefore, the combination of the three metrics allows
for a more comprehensive assessment of the model’s
performance.

𝑚𝐼𝑜𝑈 =
1

𝑁

𝑁∑
𝑖=1

|||𝑌𝑖 ∩ �̂�𝑖||||||𝑌𝑖 ∪ �̂�𝑖|||
(16)

𝑚𝑃𝐴 =
1

𝑁

𝑁∑
𝑖=1

|||𝑌𝑖 ∩ �̂�𝑖||||𝑌𝑖| (17)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑𝑁

𝑖=1
|𝑌𝑖 ∩ �̂�𝑖|∑𝑁

𝑖=1
|𝑌𝑖|

(18)

where N represents the number of categories, Yi
denotes the set of true pixels belonging to category
i, and 𝑌𝑖 is the set of pixels predicted to belong to
category i.

4.3 Experimental results and analysis

4.3.1 Comparison with baseline

The segmentation results of the proposed GAN-DANet are
illustrated in Table 3. HRNet-A denotes the model trained
on domainA,HRNet-B signifies training on domain B, and
GAN-DANet is trained ondomainC,which consists of data
generated by CrackGAN. The models that had reached a
state of convergencewere evaluated using the test sets from
domains A and B. The performance of HRNet-A highlights
the substantial influence of shadows on the accuracy of
crack segmentation. When domain B served as the test set,
the mIoU for the HRNet-A model declined from 77.51% to
57.87%, which indicated that HRNet-A could hardly dis-
tinguish the cracked pixels from the shadows. The best
segmentation results were achieved when the model was
trained in domain B, but the values ofmIoU aswell asmPA
dropped significantly when tested directly in domain A.
This is becauseHRNet-B performed fully supervised learn-
ing in domain B, and it can achieve high accuracy in the
shaded test set. Due to the differing distributions between
domain B and domain A, the test results in domain A
are inferior. Additionally, domain A does not suffer from
shadow interference, resulting in less degradation, com-
pared to HRNet-A. When domain C was utilized as the
training set, the model demonstrated robust performance
and stability in both domain A and domain B. The results
show that GAN-DANet can obtain comparable fully super-
vised learning model accuracy with a small number of
shaded images. It further proves the effectiveness of the
algorithm in this study.
GAN-DANet demonstrates robust performance in

both shadow-free (domain A) and shadowed (domain
B) environments due to its ability to effectively
extract crack features under varying conditions. In
shadow-free images, GAN-DANet enhances fine-grained
details, such as small or faint cracks, through theELFmod-
ule, which emphasizes high-frequency edge information
while suppressing redundant low-frequency background
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12 ZHANG and LIU

TABLE 3 Segmentation results of different models.

Domain A Domain B

Model
Mean intersection
over union (mIoU)

Mean pixel
accuracy (mPA) Accuracy mIoU mPA Accuracy

HRNet-A 77.51 85.08 97.71 57.87 66.86 94.21
HRNet-B 72.61 77.39 97.03 75.38 81.12 97.00
GAN-DANet 75.06 80.77 97.23 75.03 80.74 96.95

Note: HRNet-A refers to training in domain A, HRNet-B denotes training in domain B, and GAN-DANet represents training in domain C generated by CrackGAN
and testing in domain A and domain B.
Abbreviation: HRNet, high-resolution net.

TABLE 4 Comparison with domain adaptation algorithms.

Domain A Domain B
Model mIoU mPA Accuracy mIoU mPA Accuracy
HRNet-A 77.51 85.08 97.71 57.87 66.86 94.21
MMD 76.13 81.87 97.41 63.92 68.06 94.11
WMMD (Yan et al., 2017) 76.24 82.69 97.46 65.63 71.41 95.83
BDL (Yunsheng Li et al., 2019) 75.71 81.2 97.31 68.11 73.21 96.33
ADPL (Cheng et al., 2023) 76.03 81.52 97.39 72.72 77.65 96.71
GAN 74.86 80.96 97.17 65.87 70.01 96.01
GAN-DANet 75.06 80.77 97.23 75.03 80.74 96.95

Note: Bold values refer that proposed model is superior in these metrics.
Abbreviations: APDL, adaptive dual path learning; GAN, generative adversarial network; HRNet, high-resolution net; MMD, maximum mean discrepancy;
WMMD, weighted maximummean discrepancy.

features. In shadowed images, the data generated by
CrackGAN enable the model to learn domain-invariant
features, effectively distinguishing cracks from shadows.
The ELF module further enhances this capability by accu-
rately preserving crack edges while filtering out shadow
interference. This combination of data augmentation and
high-frequency feature enhancement gives GAN-DANet
a significant advantage over models trained solely on
single-domain data, such as HRNet-A or HRNet-B.

4.3.2 Comparison with state of the art

In this section, GAN-DANet was used to compare with
several classical domain adaptation algorithms, and the
results are shown in Table 4. To provide a fair com-
parison, this research employed a series of algorithms
that are commonly utilized in the domain adaptation
field, including maximum mean discrepancy (MMD),
weighted MMD (WMMD), bidirectional learning (BDL)
(Yunsheng Li et al., 2019), adaptive dual path learn-
ing (Cheng et al., 2023), and GAN. MMD and WMMD
mainly work by comparing the output features of HRNet
with those of the source and target domains and calcu-
lating the differences between them. Their losses were
subsequently incorporated into the total loss, guiding
the model to learn features that are more invariant

across domains. BDL achieved the state of the art in
semantic segmentation by utilizing bi-directional learn-
ing with self-supervised learning functions. ADPL out-
performs most models in domain adaptation by intro-
ducing two interactive single-domain adaptation paths
aligned in the source and target domains to promote
pseudo-labeling. The models mentioned are representa-
tive of domain adaptation and were therefore selected for
comparison.
From Table 4, it can be found that the GAN-DANet

proposed in this paper is superior to the current domain
adaptation algorithms. The MMD series of algorithms
underperforms, compared to other domain adaptation
algorithms, and only surpasses fully supervised learning
algorithms. This is primarily due to MMD being a non-
parametric method that makes fewer assumptions about
the sample distribution, rendering it more sensitive to dis-
tributional changes. In this study, the presence of shadows
increased the disparity between the sample distributions
in the source and target domains, rendering MMD inef-
fective at accurately measuring the differences, which led
to poor performance. When only GANs are applied for
domain adaptation, the transfer performance in crack seg-
mentation remains inferior. Although the BDL and ADPL
algorithms achieved superior transfer results, their perfor-
mance exhibited significant variability between the source
and target domains.
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ZHANG and LIU 13

The GAN-DANet proposed in this study achieves excel-
lent transfer results in both source and target domains
by training in the new domain generated by Crack-
GAN, which can be well used for the transfer learn-
ing of cracks in shaded environments. This is primarily
because GAN-DANet initially fuses the features of the
source and target domains using CrackGAN to create a
new dataset, which has more domain-invariant features.
CrackSeg improves the model’s ability to extract invari-
ant features in the crack domain by connecting features
of different resolutions in parallel and continuously fusing
multiscale features to better utilize information at different
scales.
Some advanced generative models such as StyleGAN

(Karras et al., 2019) or Diffusion models (Ho et al.,
2020), while state of the art in high-fidelity image gen-
eration, require significant computational resources and
large-scale datasets for effective training. In contrast, the
chosen methods achieve a balance between computa-
tional efficiency and segmentation accuracy, making them
more suitable for the relatively small and domain-specific
datasets used in this study.
Across the five independent runs on the fixed data

split, the model demonstrated consistent performance in
key metrics. This indicates that the model’s performance
is robust to variations in training dynamics caused by
random initialization and optimization.

4.3.3 Impact of different filters on the model

In the CrackSeg model, ELF was applied to enhance
the high-frequency information such as the edges and
details of the cracks and filter out the low-frequency infor-
mation such as shadows. The performance gap between
domain A and domain B is expected, as the model is
not trained on domain B. Despite this, the proposed
filtering method demonstrates strong generalization capa-
bilities, achieving consistent improvements in domain
A and competitive results in domain B. To verify the
validity of ELF, different high-pass filters were used as
comparison experiment, and the results are shown in
Table 5. The impact of high-pass filtering on transfer learn-
ing for crack segmentation in shaded environments is
consistently effective. TheELF this research employed out-
performs other methods in the target domain, whereas
the Sobel filter demonstrates lower efficacy. In addition,
the effect of trainable high-pass filters lies between the
Sobel class and the Laplace class. This is attributable to
this study’s proposed ELF being a Laplace-based high-pass
filter, which identifies edge information through the detec-
tion of second-order derivatives of luminance changes in
images. In contrast, the Sobel filter identifies edges solely

by the first-order derivatives of luminance changes and
determines the direction of the edges.However, since Sobel
is less sensitive to noise, it is not as good as Laplace-like
filtering, which is more sensitive to noise. The results in
Table 5 further demonstrate the effectiveness of ELF in
CrackSeg.

4.3.4 Visual comparison

This study tested GAN-DANet in the test set in domain B.
The results are shown in Figure 7. From the figure, it can
be seen that GAN-DANet still segments out the cracks in
the darker-shaded environments. Its segmentation perfor-
mance is very close to the ground truth. In addition, images
of actual shadows were collected to evaluate the segmen-
tation performance of GAN-DANet under real shadow
conditions, with the results presented in Figure 8. It
can be found that the HRNet obtained by training in
the source domain can hardly distinguish shadows from
cracks. GAN-DANet can accurately differentiate between
shadows and cracks in real-world scenarios. Moreover, it
also has high accuracy for targets that may cause misjudg-
ment, such as oil spots on the pavement, which is better
than the ADPL. Compared with the BDL model, GAN-
DANet has higher detection accuracy for both wider and
narrower cracks. Figure 8 further demonstrates the excel-
lence of GAN-DANet for crack segmentation in shaded
environments.
Despite relying on generated shadowdatasets, the evalu-

ation metrics and actual detection results demonstrate the
generalization ability of the model. Specifically, the model
achieves consistent performance across both synthetic
shadow datasets and real-world test datasets, indicating its
robustness to domain shifts.
While GAN-DANet demonstrates robust performance

in shadowed environments, additional challenges remain
in other real-world conditions, such as wet and slip-
pery roads. In wet environments, the reduced contrast
and noise introduced by water reflections make crack
segmentation even more challenging than in shadowed
conditions. Future studies will focus on extending the pro-
posed framework to address these scenarios by generating
realistic wet crack datasets and incorporating advanced
noise suppression techniques into the model.

4.4 Ablation studies and discussion

To evaluate the effectiveness of each subnetwork within
the GAN-DANet framework, ablation studies were
conducted, with the results detailed in Table 6. When
CrackGAN fuses data from both the source and target

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13451 by C
ity U

niversity O
f H

ong K
ong, W

iley O
nline L

ibrary on [16/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 ZHANG and LIU

TABLE 5 Comparison with different filters.

Domain A Domain B
Model mIoU mPA Accuracy mIoU mPA Accuracy
1 74.62 80.67 96.89 74.83 80.81 96.91
2 73.95 79.69 97.09 73.66 79.27 96.78
3 74.13 79.86 97.12 73.84 79.75 96.81
4 74.78 80.58 97.19 74.22 79.44 96.9
5 74.91 80.73 97.2 74.37 79.78 96.91
This study 75.06 80.77 97.23 75.03 80.74 96.95

Note: 1–Laplace, 2–horizontal Sobel, 3–vertical Sobel, 4–high pass filtering, 5–trainable high-pass filtering. Bold values refer that proposed model is superior in
these metrics.

F IGURE 7 Results of GAN-DANet in domain B.

F IGURE 8 Results of different domain adaptation algorithms for detecting cracks in real shaded environments.

domains to create a new dataset for training, the model’s
performance diminishes in the source domain. Con-
versely, there is a significant improvement in the target
domain, where the mIoU value increases from 57.87%

to 73.96%. While the segmentation model with ELF has
greatly improved the performance of crack segmentation
on both source and target domains, its performance in the
target domain further proves that the ELF can improve the
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TABLE 6 Ablation Studies.

Domain A Domain B
Model mIoU mPA Accuracy mIoU mPA Accuracy
Baseline 77.51 85.08 97.71 57.87 66.86 94.21
+N1 74.28 79.41 97.11 73.96 79.24 96.77
+N2 78.02 85.73 97.89 63.94 68.16 95.68
+N1+N2 75.06 80.77 97.23 75.03 80.74 96.95

Note: N1 refers to CrackGAN, which indicates that the segmentation model was trained on the generated dataset. N2 refers to CrackSeg, which indicates that the
ELF-based segmentation model was used to train the model in the source domain.

model’s ability to distinguish between cracks and shadow
edges. By comparing the results of N1 and N2, it can be
found that CrackGAN lies in improving themodel’s ability
of domain adaptation, while CrackSeg lies in filtering
the shadow features and enhancing the segmentation
model’s ability of extracting crack edges. The combination
of the two further improves the cracks segmentation
performance of the model in shaded environments, with
the mIoU value improving from 57.87% to 75.03%.

5 CONCLUSION

This research focuses on domain adaptation techniques
for high-precision segmentation algorithms of cracks in
shaded environments, which is particularly important
for intelligent transportation detection systems. Based
on this, this research proposes a two-stage model GAN-
DANet for crack segmentation in shaded environments.
GAN-DANet initially merges the unshaded and shaded
crack datasets using the sub-network CrackGAN, which
generates domains enriched with invariant features spe-
cific to the crack domain. Meanwhile, another sub-
network CrackSeg enhances the edge and texture fea-
tures of cracks during feature extraction by integrat-
ing the enhanced Laplace filtering and filtering the
shadow information. GAN-DANet can improve the trans-
fer accuracy of crack segmentation from 57.87% to 75.03%.
Comparison with the segmentation results of state-of-
the-art domain adaptation algorithms in real shadow
images further demonstrates the performance of GAN-
DANet.
In the future, more sophisticated supervised machine

learning or classification algorithms could be explored as
alternative approaches to address the pavement defects
detection or segmentation in complex environments. For
example, methods such as neural dynamic classification
algorithms, StyleGAN, Diffusion, and the finite element
machine for fast learning could offer new perspectives and
enhancemodel performance. Additionally, self-supervised
learning techniques may present an opportunity to lever-
age unlabeled data for better feature extraction and model

generalization. Incorporating these advanced techniques
could provide more robust and adaptable solutions for
pavement defects detection or structural health moni-
toring in complex environments. In addition, this study
acknowledges that the generated shadows may not fully
replicate the complexity of all real-world shadows. Some
advanced shadow generation techniques, such as using
physics-based rendering, and more real-world shadowed
datasets will be collected to further improve model robust-
ness.
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